4.10, 4.11 EXAM QUESTIONS mark scheme

 1. (a) electrophilic substitution;
 1

 cone HN03;
 1

 cone H2SO4 either or both cone missing scores one for both acids;
 1

 (b) Sn or Fe/HCl (cone or dil or neither);
 1

 (ignore extra NaOH)
 1

Sn or Fe/H₂SO₄ (dil or neither) (not HNO₃ at all)

or H₂/Ni

(not NaBH₄/ LiAlH₄ or Na/C₂H₅OH)

(d)

$$(allow - NH_3^+)$$

(e) **G**

[9]

1 1

1

1

4 M3 for structure M4 for 3 arrows and lone pair ignore use of Cl^- to remove H^+ (c) CH₃CH₂ CH₃CH₂ allow C_2H_5 and $-CO_2$ allow CH₃CH₂COOCOCH₂CH₃ or (CH₃CH₂CO)₂O 1 faster/not reversible/bigger yield/purer product/no(acid) (catalyst) (d) (i) required 1 anhydride less easily hydrolysed or reaction less violent/exothermic (ii) no (corrosive) (HCl) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper 1 any one (e) (i) $C_8H_8O_2$ 1 (ii) any two from H_3 OCH₃ Η Allow $-CO_2$ - allow C_6H_5 2 3. butanoyl chloride (a) 1 <u>Cl</u> has (two) isotopes or ³⁵Cl and ³⁷Cl (b) (i) 1 106 and 108 (ii) 1

 $CH_3OH + CH_3CH_2COOH \rightarrow CH_3CH_2COOCH_3 + H_2O$

allow C_2H_5

 CH_3CH_2

H₃

(nucleophilic) addition-elimination NOT acylation

M2

M1 (

(CH₃-)

 $\left(CH_3 CH_2 \right)$

2.

(a)

(b)

[12]

1

(c) (nucleophilic) addition-elimination, penalise electrophilic ...not esterification

M3 for structure M4 for 3 arrows and lone pair (only allow for correct M3 or close)

M2 not allowed independent of MI, but allow MI for correct attack on C+ if M2 shown as independent first.

[8]

1

4

1

1 1

3

2

4.	(a)	5 (1)
	(b)	2:2:2:3:3 (1) any order but not multiples

(c)
$$CH_3 - C - (R) (1)$$

 $\bigcup_{\substack{I \\ O}}$

(d)
$$CH_3CH_2 \text{ or } C_2H_5 \text{ or ethyl (1)}$$

 $\delta 4.13 \text{ (quartet)} : CH_2 \text{ peak } \underline{\text{split by } CH_3} / \underline{\text{next to } CH_3} \text{ (1)}$
 $\delta 1.26 \text{ (triplet)} : CH_3 \text{ peak } \underline{\text{split by } CH_2} / \underline{\text{next to } CH_2} \text{ (1)}$

(e)
$$CH_2CH_2(1)$$
 1
(f) $(CO) (CO) (2)$
 $CH_3 - C - CH_2CH_2 - C - OCH_2CH_3$
 $0 O$
allow (1) for $CH_3COCH_2OCOCH_2CH_3$
or $CH_3COOCH_2COCH_2CH_3$
Must be $C_7H_{12}O_3$

[9]

5. (a) C=O (1)

or "carbonyl"

(b) (i) \underline{Cl} has (2) isotopes (1)

Allow ³⁵Cl and ³⁷Cl without word isotope – but must be correct isotopes must have 3 different elements, i.e. not $C_3H_7^+$ but allow balanced equation including $C_3H_7^+$ for the equation mark

- (ii) Fragmentation: $CH_3 \overset{+}{C} = O$ (1) must be an ion (*)
 - Equation: $C_4H_7ClO^{+\bullet} \rightarrow CH_3CO + C_2H_4Cl^{\bullet}(1)$ (*) allow $C_2H_3O + or$ any form of it (i.e. CH_2CHO^+ or CH_2COH^+) in equation, be generous with position of $+ or \bullet$ if fragment ion completely wrong (not m/z = 43) no further marks
- (c) (i) $CDCl_3 \text{ or } CCl_4$ (1) or D_2O , C_6D_6

(ii)
$$Si(CH_3)_4$$
 (1) or SiC_4H_{12}

(d)

	Peak 1	Peak 2	Peak
Integration value	3	3	1
Splitting pattern	doublet	singlet	quartet
Number of adjacent, non-equivalent protons	1	0	3
		(1	l)

(e)
$$CH_3 - C - CH - CH_3$$
 (1)
 $\| \| \|_{O Cl}$
or $CH_3COCHClCH_3$

(f)

$$CH_3CH_2CH_2 - C C or (CH_3)_2 CHCOC1$$

(1)

 $CH_{3}CH_{2}CH_{2}COCl$

[9]

2

1 1

1

6.	(a)	$CH_{3}CH_{2} - C \bigvee_{OCH_{2}CH_{3}}^{O} (1) $ (allow - COO -) (1)	1	
	(b)	Name of mechanism: (nucleophilic) addition-elimination (1)		
		Mechanism:		
	CH	$\begin{array}{cccccccc} & & & & & & & & \\ & & & & & \\ & & & & $		
			5	
	(c)	CH ₃ CH ₂ COOCH ₂ CH ₃ ⁺ • → CH ₃ CH ₂ C ⁺ =O (1)+ CH ₃ CH ₂ O• equation (1)		
			2	
	(d)	CH ₃ CH ₂ CH ₂ COOCH ₃ or (CH ₃) ₂ CHCOOCH ₃ (1) Allow C ₃ H ₇ COOCH ₃		
			1	[9]
7.	(a)	(i) molecular formula (1)		
		(ii) ${}^{13}C$ isotope (1)	2	
		•		
	(b)	(i) $(CH_3)_2 CHCOCH_3^{+\bullet} \rightarrow (CH_3)_2 CHCO^+ + CH_3$ (1) (1) (1) (1)		
		(1)(1)(1)(ii) Structure 1Structure 2		
		CH_3CO^+ $(CH_3)_2CH^+$		
		(1) (1)	5	
	(c)	two isotopes (1)		
		$C_{3}H_{7}^{35}Cl = 78$ $C_{3}H_{7}^{37}Cl = 80$ (1)		
		relative abundances ${}^{35}\text{Cl}:{}^{37}\text{Cl} = 3:1$ (1)	3	[40]
				[10]
8.	(a)	<u>2</u> -chloropropanoic acid (1)	1	
	(b)	δ1.72 Doublet ∴ next to CH (1) δ4.44 Quartet ∴ next to CH3 (1)	2	
	(c)	Two triplets (1)	1	

$$\begin{pmatrix} d \end{pmatrix} \begin{pmatrix} (1) \\ CH_{1} - CH - COOH \\ CH_{3} - CH - COOH \\ (1) \\ CH_{3} - CH - COOH \\ (1) \\ CH_{3} - CH - COOH \\ (1) \\ H_{1} - N_{3} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} - N_{3} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} - N_{3} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} - N_{3} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} - N_{3} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ (1) \\ H_{1} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ (1) \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ (1) \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{1} \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{3} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2} \end{pmatrix} \begin{pmatrix} CH_{3} - CH - COOH \\ H_{3} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \end{pmatrix} \begin{pmatrix} H_{1} \\ H_{2} \\ H_{2}$$

[12]

9. (a) (i)
$$CH_3 - C - CH_2CH_2CH_3 + 2 [H] \rightarrow CH_3CH(OH)CH_2CH_2CH_3 (1)$$

 $\bigcup_{\substack{O \\ O \\ C_5H_{10}O \\ O \\ O \\ O \\ C_5H_{11}OH$

Mechanism:

Fragment 2: 71 ; 15 Any two × (1)

(iii)

(b)

7

10. (a) *R*: O-H (alcohols) (1)

S: C=O or carbonyl (1)

	(b)	aldeh	-CHO or RCHO (1)	2	
	(c)	(i)	Reason 1: TMS inert or non-toxic or volatile / easily removed Reason 2: single (intense) peak peak of 12 protons has 12 equivalent protons all protons in same environment	1	
			OR peak / signal upfield of others highly shielded more shielded		
			peak away from others or $\delta = 0$ or low not solvent, not cheap		
			any 2 reasons × (1)		
		(ii)	Solvent: CDCl ₃ or CCl ₄ (NOT D₂O) Reason: proton free (1) allow no hydrogens (atoms) NOT H⁺ / hydrogen ions		
				4	
	(d)	(i)	$CH_3 - C - (1)$		
		(ii)	-OH (1)		
		(iii)	$-CH_2-CH_2-(1)$	3	
	(e)	CH ₃	$ \begin{array}{c} \mathbf{C} - \mathbf{C} - \mathbf{C}\mathbf{H}_2 - \mathbf{C}\mathbf{H}_2 - \mathbf{O}\mathbf{H} \ \mathbf{I} \\ \begin{pmatrix} \mathbf{I} \\ \mathbf{O} \end{pmatrix} \end{array} $	1	[11]
11.	(a)	(i)	HCN or KCN/HCl (1) nucleophilic addition (1)		
		(ii)	$C_4H_8O \rightarrow C_5H_9NO$		
			Mr = 72 (1) $Mr = 99$ (1)		
			If MF shown lose 1 for wrong Mr.		
			If no MF shown max 2 if Mr wrong		
			$5g \rightarrow \frac{5}{72} \times 99$ (1) (= 6.88g)		
			64% yield = $0.64 \times \frac{5}{72} \times 99 = 4.40g$ (1)		
			(allow answer 4.36 – 4.42)	6	

(b) (i) NaBH₄ or LiAlH₄ or H₂/Ni or Na/C₂H₅OH (1)
(ii) racemic mixture formed (1)
or equal amounts of enantiomers
(iii) butanone has peak at
$$\sim 1700 \text{ cm}^{-1}$$
 (1)
(but not at $\sim 3350 \text{ cm}^{-1}$)
B has peak at $\sim 3350 \text{ cm}^{-1}$ (1)
(but not at $\sim 1700 \text{ cm}^{-1}$) 4
(c)

$$\begin{array}{c} CH_{3} - CH - CH_{2}CH_{3} \longrightarrow CH_{3} - CH - CH_{2}CH_{3} \longrightarrow CH_{2} \xrightarrow{+} CH_{2} - CH_{2}CH_{3} \\ | & (1) & | & | \\ OH & (1) & OH \\ (1) & H^{+} & (arrow to O) \end{array}$$

(d)
$$(H_2 - CH_2 - CH_3)$$

 $(H_2 - CH_3)$
 $(H_3 - CH_3)$
 $($

4

1

1

4

[15]

12. (a) A is RCOOR' (1)

 $R + R' = 102 - 44 = 58 (1) \equiv C_4 H_{10}$ $\therefore C_5 H_{10} O_2 (1) \qquad 3$ (b) 2:2:3:3 (1) 1 (c) Two CH₂CH₃ groups present (1) 1 a b c d

(d)
$$C H_3^{a} C H_2 COOC H_2^{c} C H_3^{a}$$
 (1)

(e)

Chemical shift, δ/ppm	1.09	1.33	2.32	4.13
Label of group	a (1)	d (1)	b (1)	c (1)

[10]

13.	(a)	$(CH_3)_4$ Si or tetramethylsilane (1)	1	
	(b)	4 (1)	1	
	(c)	2:1:6:3 (1)	1	
	(d)	$-CH_2CH_3$ (1)		
		CH_3 splits CH_2 to form a quartet (1)		
		CH_2 splits CH_3 to form a triplet (1)	3	
	(e)	two equivalent CH_3 groups (1)	1	
	(f)	$(CH_2)_2 C CH_2CH_2$ (1)	1	
		$(CH_3)_2 C CH_2CH_3 (1)$ OH		
		011		[8]
14.		(i) $CH_3COOCH_2CH_3 \text{ or } CH_3COOC_2H_5$ (1)		
		(ii) 3 (1)		
		(iii) $3+4$ or triplet + quartet (1)	3	
				[3]
15.	(a)	same molecular formula / same number of each type of atom (1)		
		different arrangements of atoms (in the molecule) (1) (not just same structural formula)	2	
	(b)	(i)	2	
	Н —	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
		H H H H H H CH ₃ H		
		$\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$	2	
		(ii) 43: $CH_3CH_2CH_2^+/CH_3C^+HCH_3/C_3H_7^+$ (1)		
		29: $CH_3CH_2^+/C_2H_5^+$ (1)		
		15: $CH3^+$ (1)	2	
		(2 max if +ve sign omitted or –ve) (+ can be anywhere)	3	
		(iii) Isomer 1 (dependent on candidate's order) (1)		
		Isomer 2 could not (easily) give peak at $29 / C_2 H_5^+$ (1)	2	

(c)	(i)	CH ₃ C OCH ₃	or	HC OC ₂ H ₅	(1)		
		CH ₃ CH ₂ C OH	(1)			2	
	(ii)	ester (1) carboxylic acid (1)					
		names must be appropriate these marks dependent				2	[13]

[12]

17. nucleophilic addition (1) (a) Name Mechanism $\rightarrow CH_3 - CH_3 - CH_3 - CH_3$ CH₃--C CH₃ NĒ: (1) 5 $CH_3COCH_3 + 2[H] \rightarrow CH_3CH(OH)CH_3 (1)$ Equation (b) (i) Reducing agent $NaBH_4(1)$ (ii) Carbonyl compound A Alcohol C Η $CH_{3} - CH_{2}CH_{3} \quad (1)$ (1) CH₃COCH₂CH₃ ÓН Carbonyl compound **B** Alcohol **D** CH₃----CH ----CHO (1) $CH_3 - CH - CH_2OH$ (1) ĊH₃ CH₃

[11]

1715 cm⁻¹ C=O group (**1**) 18. A 3350 cm^{-1} O–H group В alcohol (1) $\begin{array}{ccc} A CH_3 CH_2 COCH_2 CH_3 & (1) \\ \uparrow & \uparrow \\ t & (1) & q & (1) \end{array}$ two environments or two kinds of proton (1) CH₃CH₂ adjacent or coupled (1) ratio 2:3 or 4:6 (1) symmetric (1) $[CH_3CH_2COCH_2CH_3]^+ \rightarrow CH_3CH_2CO^+ + CH_3CH_2 \cdot (1)$ m/z = 86(1)(1) $\underline{\text{or}} M_r$ for A $CH_3CH_2CHCH_2CH_3 \rightarrow CH_3CH = CHCH_2CH_3$ (1) | OH (1) C ↓ B $CH_3CH_2\overset{+}{C}HCH_2CH_3$ (1) and $CH_3\overset{+}{C}HCH_2CH_2CH_3$ (1) both secondary (1) hydration gives **B** and $CH_3CHCH_2CH_2CH_3$ (1) | ОН D about 50% of each (1) $A \rightarrow B$ reduction $B \rightarrow C$ dehydration <u>or</u> elimination (1) C is an alkene (1) cis/trans isomers (1) D is a racemate (1) or optical isomers any 20 [20] 19. (a) X (O–H) (alcohols) penalise acid or missing "alcohol" 1 Y C=O allow carbonyl 1 А 4

(b)

Allow conseq dibromocompounds following incorrect unbranched alkenes NOT allow dibromocompound consequent on a duplicate alkene NOT allow monobromocompounds if HBr added 3

6:3:1 either next to correct structure or to none	1	
Allow a mark for identifying correct dibromocompound with three peaks even if integration ratio is wrong	1	
if 6:3:1 missing or wrong, no marks for splitting	1	
Only award a mark for splitting if it is clear which integration number it refers to	1	
6 singlet or drawn	1	
3 doublet or drawn	1	
1 quartet/quadruplet or drawn	1	[16]

(1)

(1)

20.	(a)	(i)	3 peaks or shown in a list	1
			m/z = 126, 128 and 130 (56 +70/72/74) (all 3 scores 2) (if 56 wrong allow (x + 70/72/74) for1(x cannot be zero) (any two scores 1)	2
		(ii)		3
			$[C_4H_8Cl_2]^{+\bullet} \longrightarrow CH_3CH_2 \longrightarrow CH_3CH_2 + $	•CH ₂ Cl

(1)

(b)	(i)	optical		1
		equal mixture of enantiomers		1
		(optically) inactive or effects ca	ancel	1
		plane polarised light rotated in opposite/different	use <u>stereospecific</u> reagent (QoL)	1
		directions (QoL)	reacts with one isomer only	1
	(ii)	carbocation		1
		planar – (<i>must refer to carboca</i>	,	1
		attack from either side equally (must refer to carbocation /inte	•	1
				_

7 max

1

1

(c)	(i)	2 peaks (if 4 peaks allow splitting only)	1
		ratio 6:2 or 3:1	1
		doublet (6 or 3)	1
		quartet (2 or 1)	1

(ii) **S**

Т

$$H_{3}C \xrightarrow{CH_{3}} CH_{2}Cl$$

$$H_{3}C \xrightarrow{C} CH_{2}Cl$$

[19]

(c) e.g. $2NaOH + HO_2CCHCHCO_2H \rightarrow NaO_2CCHCHCO_2Na + 2H_2O$

	Both	Both H replaced		
	Bala	nced for atoms and charges	1	
		NB Allow ionic equations and $2NaOH + C_4H_4O_4 \rightarrow$		
		$C_4H_2O_4Na_2 + 2H_2O$		
		Allow one if structure incorrect but molecular formula correct		
		Allow one for a correct equation showing one H replaced		
(d)	<i>M1</i>	Two peaks	1	
. ,	М2	No splitting or singlets	1	
	<i>M3</i>	(Two) non-equivalent protons or two proton environments	1	
	M4	No adjacent protons	1	
	M5	Same area under the two peaks or same relative intensity	1	
			Max 3	
		NB Doublet could score M1 and M3 or M5 (Max 2)		
		More than two peaks $CE = 0$		
		Apply the "list principle" to incorrect answers if more than 3 given		
				[15]

22. (a) $[CH_3CH_2CO]^+$

$CH_3CH_2COCl + AlCl_3 \rightarrow [CH_3CH_2CO]^+ + AlCl_4^-$

(Penalise wrong arrows in the equation or lone pair on Al In the equation, the position of the + on the electrophile can be on O or C or outside square brackets, Can score electrophile mark in mechanism if not previously gained)

(Arrow for M1 must be to C or to the + on C penalize + in intermediate if too close to C1; horseshoe should extend from C2 to C6) 1

1

(b)		$m/z = 105 \text{ C}_6\text{H}_5\text{CO}^+$	-
		$m/z = 77 C_6 H_5^+$ (not Wheland intermediate) (Penalise missing + once) Allow position of + on O or C of CO or outside [] for the fragment ion [C ₆ H ₅ CO] ⁺ Allow position of + on H or C or outside [] for the fragment ion	_
		$[C_{6}H_{5}]^{+}$ $[C_{6}H_{5}COCH_{2}CH_{3}]^{+} \longrightarrow C_{6}H_{5}CO^{+} + CH_{3}CH_{2}^{-}$ (`must be on H or C of CH ₂ or outside bracket)	
		(1) for molecular ion (1) for RHS Allow molecular formulae, i.e. $C_9H_{10}O^+ \cdot \longrightarrow C_7H_5O^+ + C_2H_5$	2
((c)	Nucleophilic addition 1	-
		 Q contains asymmetric carbon or chiral centre or are chiral molecules with 4 different groups/atoms attached (stated) not molecules attached 	
		 3 <u>planar</u> C=O 4 attack from each side 5 equally likely or equal amounts of each isomer formed 6 <u>Racemic</u> mixture or <u>racemate</u> (Q of L) 7 of mirror images or enantiomers or d/l or +/- or R/S or drawn max 6 	ō
(((d)	Conc H_2SO_4 or conc H_3PO_4 or Al_2O_3 or iron oxidesNot HCl or HBr1Geometrical or cis-trans1Double bond or C=C not just π cloud (stated not just drawn)1	
		2 Different atoms/groups on each C (not molecules) (stated not just drawn)	_

[20]

24.

- (c) $CH_3CH_2CH_2CH_2OH$ (1) Product $CH_3CH_2CH_2CH_2OOCCH_3$ (1) (CH₃)₃COH Product (CH₃)₃COOCCH₃ (1) 4
- (d) $CH_3CH_2CH_2OH$ has five peaks (1) (CH_3)₃COH has two peaks (1)

[15]

2

25. (a) 3 Ketones:

$$\begin{array}{ccccccc} CH_{3} \\ CH_{3}CH_{2}CH_{2}CH_{2}CH_{3} & \textbf{(1)} \\ & & & \\ & & \\ O \\ & & & \\ & & \\ O \\ & & & \\$$

(b) 4 aldehydes:

$$\begin{array}{ccccccc} CH_{3}\\ CH_{3}CH_{2}CH_{2}CH_{2}-C & & H \\ & & H \\ CH_{3}CH_{2}-CH-C & & H \\ & & CH_{3}-CH-CH_{2}-C & \\ & & CH_{3} \\ CH_{3} & & CH_{3}-CH_{2}-C & \\ & & H \\ & & CH_{3}-CH_{3} \\ CH_{3} & & CH_{3} \\ \end{array} \tag{1}$$

(c) nucleophilic \frown addition (1)

equal (1) mixture of optical isomers (1)

e.g
$$CH_3CH_2$$
 OH
 CH_3CH_2 C (1)
 CH_3CH_2 CN

(d) Reagents are oxidizing agents (1)
 Aldehydes can be (easily) oxidized (1)
 Ketones are not (easily) oxidized (1)

[20]

4

26. Part (a) for each section:

A totally wrong reagent scores zero

An incomplete reagent such as silver nitrate for Tollens, loses the reagent mark, but can get both observation marks.

A wrong reagent such as $[Ag(NH_3)_2]^{2+}$ or bromide water loses the reagent mark and the next mark "gained", i.e. can only score 1/3 if both observations correct

If two test given and results given correctly for both compounds in both tests then full marks If one test on A and a different test on B with only these results given

if both results correct then score 2/3

if either result wrong then score 1/3

if either test would not work as a distinction, then score 0/3

If the candidate says A = ketone (or C = benzene), lose this mark.

If the candidate omits the letters when referring to the pair of compounds, e.g. says alkene decolourises / alkane no reaction penalise one mark only.

(a) (i) penalise observations which just say colour change occurs or only state starting colour

Tollens	[1]	Fehlings / Benedicts	[1]	Brady's or 2,4-dnph	[1]	sodium	[1]
No reaction A	[1]	no reaction A	[1]	no reaction A	[1]	bubbles or hydrogen A	[1]
silver mirror or grey or ppt B	[1]	red or ppt B	[1]	(Yellow / orange) <u>Xtals or</u> <u>ppt</u>	[1]	no reaction B	[1]
(not silver solution)	[1]	not red solution	[1]	not yellow / orange solution	[1]		

Carboxylic acid / H ₂ SO ₄	[1]	Schiff's	[1]	iodoform or I ₂ / NaOH	[1]	PCl ₅	[1]
(sweet) smell A	[1]	no reaction A	[1]	yellow (ppt) A	[1]	(misty) fumes A	[1]
no reaction B	[1]	goes pink B	[1]	no reaction B	[1]	no reaction B	[1]

(ii)

Bromine (water)	[1]	KMnO ₄	[1]	KMnO ₄ / H ₂ SO ₄	[1]	[1]
no reaction C	[1]	no reaction C	[1]	no reaction C	[1]	[1]
decolourised D	[1]	goes brown D	[1]	goes colourless D	[1]	[1]
not clear not discolour (is)ed						

(iii) not just smell for E

an identified (hydrogen) carbonate	[1]	correct metal	[1]	UI or stated indicator	[1]	PCl ₅	[1]
no reaction e	[1]	no reaction E	[1]	no change E	[1]	(misty) fumes E	[1]
bubbles or CO ₂ F	[1]	bubbles or H ₂ F	[1]	red or correct colour F	[1]	no reaction F	[1]

note MAX 8

(b) F has absorption at <u>2500 - 3000 cm⁻¹</u> (due to COOH) (1)
N.B. Qu asks "How fingerprinting is used" i.e. no marks for simply stating fingerprint region unique. Compare with (spectrum of) <u>known compound or database</u> (1) (exact) match (c) major peak $[CH_3CO]^+$ (1) m / z 43 (1) $CH_3COOCH_3^+ \rightarrow CH_3CO^+ + OCH_3^-$ (1 for molecular ion) (1 for correct other fragment)

Alternative:

(b)

major peak $[CH_3]^+$ (1) m/z 15 (1) CH₃COOCH₃⁺· \rightarrow CH₃⁺ + CH₃COO[.] or COOCH₃[.] or C₂H₃O₂[.] or C₃H₆O₂⁺. (1) (1 for radical)

If major peak wrong but possible e.g. $CH_3OO^+ m/z = 59$ no marks so far, but can score up to 2 for $CH_3COOCH_3^+ \rightarrow CH_3^+ + CH_3COO^+$ or $^+COOCH_3 + CH_3$ **1 for correct other fragment]**

г.

4

[15]

 27. (a) X contains >C=O (1) if X and Y reversed lose this mark but allow remaining max 6/7

$$\therefore X \text{ is } CH_3CH_2COOH (1)$$

$$\therefore Y \text{ is } CH_3CH_2CH_2OH (1)$$

$$\therefore A \text{ is } CH_3CH_2C \bigvee_{OCH_2CH_2CH_3}^{O} (1)$$

$$Propanol \bigvee_{Y \text{ reagent: acidified } K_2Cr_2O_7 \quad (1)$$

$$Propanol \bigvee_{Y \text{ reagent: NaBH_4} \quad (1)$$

$$Conc H_2SO_4 : \text{ catalyst } (1) \qquad 7$$

$$4$$

$$CH_3CH_2CH_2 \stackrel{H}{\longrightarrow} CH_3 \stackrel{H}{\longrightarrow} CH_3CH_2 \stackrel{H}{\longrightarrow} CH_3CH_2 \stackrel{H}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} (1)$$

$$CH_3 \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} \frac{CH_3}{\square} \stackrel{C}{\longrightarrow} CH_3 \stackrel{C}{\longrightarrow} (1)$$

$$CH_3 \stackrel{H}{\longrightarrow} \stackrel{H}{\longrightarrow} \frac{H}{\square} \stackrel{H}{\longrightarrow} (1)$$

$$CH_3 \stackrel{C}{\longrightarrow} \stackrel{C}{\longrightarrow} \frac{CH_3}{(1)} \stackrel{C}{\longrightarrow} \frac{C}{(1)} \stackrel{C$$

(c)
$$-OCH_2 - 3.1 - 3.9 (1)$$

 $-CH_2 - C - 2.1 - 2.6 (1)$
a: quartet (1) 3 adjacent H (1)
b: triplet (1) 2 adjacent H (1)
(d) $3269 \text{ cm}^{-1} \therefore OH$ alcohol (1)
 $\therefore \underline{G} \text{ is } \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} \overset{H}{\longrightarrow} (1)$ 2

Notes

(a) first mark for C=O stated or shown in X Ignore wrong names

 $\begin{array}{l} Y \ \underline{CH_3CH_2}CH_2OH \\ allow \ C_3H_7 \ in \ A \ if \ Y \ correct \ or \ vice \ versa \\ Allow \ (1) \ for \ A \ if \ correct \ conseq \ to \ qrong \ X \ and \ Y \end{array}$

other oxidising agents: acidified KMnO₄; Tollens; Fehlings

other reducing agents: LiAlH₄; Na/ethanol; NiH₂; Zn or Sn or Fe/HCl

- (b) give (1) for carboxylic acid stated or COOH shown in <u>each</u> suggestion (1) for correct _E any 2 out of 3 for **B**, **C** or **D** allow C₃H₇ for either the **B** or **D** shown on the mark schme i.e. a correct structure labelled **B**, **C** or **D** or **E** will gain 2.
- (c) protons a quartet must be correct to score 3 adjacent H mark. Same for b
- (d) allow (1) for any OH (alcohol) shown correctly in any structure ignore extra functional groups. Structure must be completely correct to gain second mark

Organic points

 <u>Curly arrows:</u> must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space e.g.

[19]

(2) <u>Structures</u>

 $\frac{\text{allow } CH_3 - \text{ or } -CH_3 \text{ or } CH_3 \text{ or } C$

 28. (a) Identity of X; 2-methylpropene (1) Absorption at 1650 cm⁻¹ indicates an alkene present (1) OR a chemical answer e.g. Br₂ (aq) brown to colourless

(b) Reagents Step 1 KOH (allow NaOH) (1) alcoholic (1) warm (1) Only allow solvent and warm if reagent correct

Step 2 HBr (1)

Or a carbocation mechanism

(c) A gives three peaks (1)
 B gives one peak (1)
 Allow one for "A has more peaks than B" when no number of peaks is given

2

2

[15]

29. B $1685 \text{ cm}^{-1} \rightarrow \text{C=O}(1)$

C 3340 cm⁻¹ \rightarrow OH <u>or</u> alcohol (1)

D
$$1630 \text{ cm}^{-1} \rightarrow \text{C=C} \text{ or alkene (1)}$$

only 1,4-dimethylbenzene will give B as a single compound (1)

- 30. A: 4 peaks or 4 different environments (1)
 1:2:2:3 (1) OH singlet (1) CH₃ singlet (1)
 2 triplets (1) CH₂CH₂ coupled (1)
 - B: 4 peaks or 4 different environments (1) 1:2:2:3 (1) OH singlet (1) OCH₂O singlet (1) quartet + triplet (1) CH₂CH₃ coupled (1)
 - C: 2 peaks or 2 different environments (1) 2:6 or 1:3 (1) CH₃ groups equivalent (1) 2 singlets (1) no coupling (1)

[max 15]

[18]

31. (a) (i) *electrophile* lone pair acceptor/electron deficient species / electron seeking group / electron lover (not just positive group / species) (1) *substitution* replacement / swap / substitution of one atom / group (in a molecule) by another atom / group (1) not molecules replaced
(ii) nitronium ion / NO₂⁺ (1)

 $HNO_3+ + H_2SO_4 \rightarrow H_2NO_3^+ + HSO_4$ (1) $H_2NO_3^+ + H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + HSO_4^-$ (1) allow 1 mark for HNO₃ + $H_2SO_4 \rightarrow NO_2^+ + HSO_4 + H_2O_4$ allow 2 marks for HNO₃ $2H_2SO_4 \rightarrow NO_2^+ + H_3O^+ + 2HSO_4^-$ 1 for species, 1 for balancing mechanism shows attack by NO_2^+ with curly arrow from ring (1) appropriate intermediate with '+' charge in centre of ring, incomplete circle or 2 double bonds (1) mark consequentially on electrophile given curly arrow from C-H bond to ring / deprotonation to give H⁺ final product must be nitrobenzene (1) 6 above 60 °C likelihood of multiple substitution (iii) / nitration / (1) 1 likely to carry on reacting chlorine (1) $AlCl_3$ / FeCl_3 / Fe / other suitable halogen carrier (1) absence of sunlight / room temp / anhydrous (1) 3

(b)

	(c) (2-chloro(-2-)methylpropane / (2)methyl 2 chloropropane (1)	1	
		(ii)	compound D (1)		
			ame type of protons / hydrogen are all in same (chemical) ronment / equivalent as they are all $CH_3(1)$	2	
		(iii)	compound C (1)		
			ratio = 6:2:1 (1)		
			2 CH ₃ groups have 6 equivalent protons, CH ₂ has 2 protons, CH 1 proton (1)	3	
			must say same type of proton / H		
			penalise first omission of 'same type'		
		(iv)	appropriate unambiguous formula for either but-1-ene or but-2-ene (1)		
			appropriate unambiguous formula for the remaining structural isomer		
			allow 1 mark if candidate draws cis and trans but-2-ene (1)	2	
		(v)	unambiguous structure for 2-methylpropan-1-ol – may be from mechanism (1)		
			curly arrow / attack by OH ⁻ curly arrow from lone pair or charge only (1)		
			do not allow if Na -OH		
			curly arrow from bond to Cl / dipole shown on C-Cl bond / intermediate showing 3 full and 2 partial bonds to C (1)		
			loss of Cl^- NaCl or Na ⁺ :Cl ⁻ (1)		
			[–] not allowed	4	
			if $S_N 1$ mechanism given: first mark as above - independent second mark for correct carbocation formed including curly arrow from C to Cl or C^{S+} – Cl^{S-}		
			third mark for hydroxide attack as above final mark not available (wrong mechanism)		
			penalise missing proton once only		
					[24]
22					
32.	(a)		$(R)^{+}$ Is a radial-cation (1) covalent bond breaks (1) rm a cation (M^{+}) (1) and a radical (R^{-}) (1)	4	
	(h)			4	
	(b)	CH ₃	as a two isotopes (1) $CH_2^{35}Cl = 64$ and $CH_3CH_2^{37}Cl = 66$ (1) ive abundances ${}^{35}Cl : {}^{37}Cl = 3 : 1$ (1)		
			$CH_2CI^{+\bullet} \rightarrow CH_3CH_2^+ + CI^{\bullet}(1)$	4	
	(c)	5	H_2 CH ₂ Cl <u>or</u> 3 isotopic combinations possible (1)		
	(-)		$^{35}_{4}Cl_2 = 98 (1) C_2H_4^{35}Cl^{37}Cl = 100 (1) C_2H_4^{37}Cl_2 = 102 (1)$	4	
		2 -			[12]

34.

(a) Region 1500-400 cm⁻¹ (1) unique for each compound (1) compare spectrum with that of known compound (1) exact match (1)

(b) C₅ esters

(3 peaks) U (acid) is CH₃COOH (**2**) (2 peaks)

T absorption at 3250 cm⁻¹ confirms OH (alcohol) (**1**) U absorption at 2900cm⁻¹ confirms OH (acid) or at 1700 cm⁻¹ confirms C=O (**1**) max 11

 $\mathbf{A} = \mathbf{butanal}$

 $\mathbf{B} = methylpropanal$

 $\mathbf{C} =$ butanone

 $\mathbf{D} = \text{ethyl ethanoate}$ (1)

Ignore numbers in names unless they make them incorrect spellings must be correct accept alternative trivial names correctly spelled

8

4

[15]

(b) ethanol / correct formula (1)

ethanoic acid / ethanoyl chloride / ethanoic anhydride / correct formula (1) temperature less than $100 \text{ }^{\circ}\text{C}$ / reflux heat / concentrated sulphuric acid (1) dilute sulphuric acid / acid conditions / H⁺ (this mark dependent on sensible answers for first two marks) for ethanoyl chloride, room temperature / dry / anhydrous for ethanoic anhydride, heat / up to 100 °C

	2 Hs in unique environments (1)				
(ii)	Α				
	four different chemical environments (for protons) (1)				
	in (i) and (ii), second mark is dependent on first mark	2			

(iii) same number of hydrocarbon groups with same number of protons in each 1

(f) nucleophilic addition (1)

allow –ve charge on N but curly arrow must come from C

allow H from HCN or H₂O

(1) for product

5

3

[26]