4.10, 4.11 EXAM QUESTIONS mark scheme

1. (a) electrophilic substitution; 1
cone HNO_{3}; 1
cone $\mathrm{H}_{2} \mathrm{SO}_{4}$ either or both cone missing scores one for both acids; 1
(b) Sn or $\mathrm{Fe} / \mathrm{HCl}$ (cone or dil or neither);
(ignore extra NaOH)
Sn or $\mathrm{Fe} / \mathrm{H}_{2} \mathrm{SO}_{4}$ (dil or neither) (not HNO_{3} at all)
or $\mathrm{H}_{2} / \mathrm{Ni}$ (not $\mathrm{NaBH}_{4} / \mathrm{LiAlH}_{4}$ or $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)

(c) 77 or 92; 1
(d)

(e) \mathbf{G}

H

2. (a) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(b) (nucleophilic) addition-elimination NOT acylation

M3 for structure
M4 for 3 arrows and lone pair
ignore use of Cl^{-}to remove H^{+}
(c)

allow $\mathrm{C}_{2} \mathrm{H}_{5}$ and $-\mathrm{CO}_{2}-$
allow $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCOCH}_{2} \mathrm{CH}_{3}$
or $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$
(d) (i) faster/not reversible/bigger yield/purer product/no(acid) (catalyst) required
(ii) anhydride less easily hydrolysed or reaction less violent/exothermic no (corrosive) (HCl) fumes formed or safer or less toxic/dangerous expense of acid chloride or anhydride cheaper
any one
(e) (i) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
(ii) any two from

3. (a) butanoyl chloride
(b) (i) $\underline{\mathrm{Cl}}$ has (two) isotopes or ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{C} 1$
(ii) 106 and 1081
(c) (nucleophilic) addition-elimination, penalise electrophilic ...not esterification

M3 for structure
M4 for 3 arrows and lone pair (only allow for correct M3 or close)
M2 not allowed independent of Ml,
but allow Ml for correct attack on $\mathrm{C}+$ if M 2 shown as independent first.
4. (a) 5 (1)
(b) 2:2:2:3:3 (1)
any order but not multiples
$\begin{array}{cc}\text { (c) } \mathrm{CH}_{3}-\mathrm{C}-(\mathrm{R})(\mathbf{1}) & 1 \\ \mathrm{O} & \end{array}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{5}$ or ethyl (1)
$\delta 4.13$ (quartet) : CH_{2} peak split by $\mathrm{CH}_{3} / \underline{\text { next to } \mathrm{CH}_{3}} \mathbf{(1)}$
$\delta 1.26$ (triplet) : CH_{3} peak split by $\mathrm{CH}_{2} / \underline{\text { next to } \mathrm{CH}_{2}} \mathbf{(1)}$
(e) $\mathrm{CH}_{2} \mathrm{CH}_{2}(\mathbf{1})$
(f)

allow (1) for $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{OCOCH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$

Must be $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3}$
5. (a) $\mathrm{C}=\mathrm{O}(1)$ or "carbonyl"
(b) (i) Cl has (2) isotopes (1)

Allow ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$ without word isotope - but must be correct isotopes
must have 3 different elements, i.e. not $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$but allow balanced equation including $\mathrm{C}_{3} \mathrm{H}_{7}{ }^{+}$for the equation mark
(ii) Fragmentation: $\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}}=\mathrm{O}$ must be an ion (${ }^{*}$)

Equation: $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{ClO}^{+\bullet} \rightarrow \mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}^{\bullet}(\mathbf{1})$
(*) allow $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}+$ or any form of it (i.e. $\mathrm{CH}_{2} \mathrm{CHO}^{+}$or $\mathrm{CH}_{2} \mathrm{COH}^{+}$) in equation, be generous with position of + or if fragment ion completely wrong (not $\mathrm{m} / \mathrm{z}=43$) no further marks
(c) (i) CDCl_{3} or $\mathrm{CCl}_{4}(\mathbf{1})$ or $\mathrm{D}_{2} \mathrm{O}, \mathrm{C}_{6} \mathrm{D}_{6}$
(ii) $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}(\mathbf{1})$ or $\mathrm{SiC}_{4} \mathrm{H}_{12}$
(d)

	Peak 1	Peak 2	Peak
Integration value	3	3	1
Splitting pattern	doublet	singlet	quartet
Number of adjacent, non-equivalent protons	1	$\mathbf{0}$	$\mathbf{3}$

(1)
(e)

(1)
or $\mathrm{CH}_{3} \mathrm{COCHClCH}_{3}$
(f)

or
or
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCl}$
(1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$
6. (a)

(allow - COO -) (1)
1
(b) Name of mechanism: (nucleophilic) addition- elimination (1)

Mechanism:

(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}{ }^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}^{+}=\mathrm{O}(\mathbf{1})+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O} \bullet$ equation (1)
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}$ or $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{3}$ (1)

Allow $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOCH}_{3}$
7. (a) (i) molecular formula (1)
(ii) ${ }^{13} \mathrm{C}$ isotope (1)
(b) (i) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCH}_{3}{ }^{+\bullet} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCO}^{+}+\dot{\mathrm{C}} \mathrm{H}_{3}$
(1)
(1)
(1)
(ii) Structure 1

$$
\mathrm{CH}_{3} \mathrm{CO}^{+}
$$

(1)

Structure 2
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}^{+}$
(1)

5
(c) two isotopes (1)
$\mathrm{C}_{3} \mathrm{H}_{7}{ }^{35} \mathrm{Cl}=78 \quad \mathrm{C}_{3} \mathrm{H}_{7}{ }^{37} \mathrm{Cl}=80 \quad$ (1)
relative abundances ${ }^{35} \mathrm{Cl}:{ }^{37} \mathrm{Cl}=3: 1$ (1)
8. (a) 2-chloropropanoic acid (1) 1
(b) $\delta 1.72$ Doublet \therefore next to CH (1)
$\delta 4.44$ Quartet \therefore next to $\mathrm{CH}_{3}(\mathbf{1})$ 2
(c) Two triplets (1) 1
(d)

(e) (i)

(ii)

(iii)
(CONH)

or
(1)

Or anhydride

3
9. (a) (i) $\mathrm{CH}_{3}-\underset{\|}{\mathrm{C}}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}+2[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (1)
or $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O} \quad$ or $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}$
(ii) Name of mechanism: nucleophilic addition (1)

QoL
Mechanism:

(iii) racemic (racemate) mixture formed (1)

OR explained e.g. 2 enantiomers in equal amounts
(b) Fragment 1:43;43

Fragment 2: 71; 15
Any two $\times(1)$
10. (a) $\quad R$: O-H (alcohols) (
S : C=O or carbonyl (1)
(b) aldehyde (1)
-CHO or RCHO (1)
(c) (i) Reason 1: TMS inert or non-toxic or volatile / easily removed Reason 2: single (intense) peak
peak of 12 protons
has 12 equivalent protons
all protons in same environment
OR
peak / signal upfield of others
highly shielded
more shielded
peak away from others or $\delta=0$ or low
not solvent, not cheap
any 2 reasons $\times(1)$
(ii) Solvent: CDCl_{3} or $\mathrm{CCl}_{4}\left(\mathbf{N O T} \mathbf{D}_{2} \mathbf{O}\right)$

Reason: proton free (1)
allow no hydrogens (atoms)
NOT H^{+}/ hydrogen ions
(d) (i) $\underset{\|}{\mathrm{CH}_{3}-\underset{\mathrm{O}}{\mathrm{C}}-(1)}$
(ii) $-\mathrm{OH}(1)$
(iii) $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-(\mathbf{1})$
(e) $\mathrm{CH}_{3}-\underset{\binom{\mathrm{I}}{\mathrm{O}}}{ }-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}(\mathbf{1})$
11. (a) (i) HCN or $\mathrm{KCN} / \mathrm{HCl}$ (1)
nucleophilic addition (1)
(ii) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \quad \rightarrow \quad \mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}$
$\mathrm{Mr}=72$ (1) $\quad \mathrm{Mr}=99$ (1)
If MF shown lose 1 for wrong Mr.
If no MF shown max 2 if Mr wrong
$5 g \quad \rightarrow \quad \frac{5}{72} \times 99(1) \quad(=6.88 g)$
64% yield $=0.64 \times \frac{5}{72} \times 99=4.40 \mathrm{~g}(\mathbf{1})$
(allow answer 4.36-4.42)
(b) (i) NaBH_{4} or LiAlH_{4} or $\mathrm{H}_{2} / \mathrm{Ni}$ or $\mathrm{Na} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (1)
(ii) racemic mixture formed (1)
or equal amounts of enantiomers
(iii) butanone has peak at $\underset{\sim}{\sim} 700 \mathrm{~cm}^{-1}$ (1)
(but not at $\sim 3350 \mathrm{~cm}^{-1}$)
B has peak at $\sim 3350 \mathrm{~cm}^{-1}$
(1)
(but not at $\sim 1700 \mathrm{~cm}^{-1}$)
(c)

C
I
H
(d) $\left.\quad-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{2} \mathrm{CH}_{3}}{\mathrm{CH}}\right)_{(\mathrm{n})}$
(1)
or $\mathrm{C}_{2} \mathrm{H}_{5}$
12. (a) A is $\mathrm{RCOOR}^{\prime}(\mathbf{1})$
$\mathrm{R}+\mathrm{R}^{\prime}=102-44=58(\mathbf{1}) \equiv \mathrm{C}_{4} \mathrm{H}_{10}$
$\therefore \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}(\mathbf{1})$
(b) $2: 2: 3: 3 \mathbf{(1)} 1$
(c) Two $\mathrm{CH}_{2} \mathrm{CH}_{3}$ groups present (1) 1
(d) $\mathrm{C}_{\mathrm{H}}^{\mathrm{a}} \mathrm{C}^{\mathrm{C}} \stackrel{\mathrm{b}}{\mathrm{H}}_{2} \mathrm{COOCH}_{\mathrm{H}}^{\mathrm{c}} \mathrm{C}_{\mathrm{H}}^{\mathrm{H}}{ }_{3}(\mathbf{1)} \quad 1$
(e)

Chemical shift, $8 / \mathrm{ppm}$	1.09	1.33	2.32	4.13
Label of group	$\mathrm{a}(\mathbf{1})$	$\mathrm{d}(\mathbf{1})$	$\mathrm{b}(\mathbf{1})$	$\mathrm{c}(\mathbf{1)}$

13. (a) $\left(\mathrm{CH}_{3}\right)_{4}$ Si or tetramethylsilane (1) 1
(b) 4 (1) 1
(c) $2: 1: 6: 3$ (1) 1
(d) $-\mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{1})$
CH_{3} splits CH_{2} to form a quartet (1)
CH_{2} splits CH_{3} to form a triplet (1) 3
(e) two equivalent CH_{3} groups (1) 1
(f) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (1) 1 OH
14. (i) $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ or $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ (1)
(ii) 3 (1)
(iii) $3+4$ or triplet + quartet (1)
15. (a) same molecular formula / same number of each type of atom (1) different arrangements of atoms (in the molecule) (1) (not just same structural formula)
(b) (i)

(1)

(1)
(ii) 43: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{+} / \mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{HCH}_{3} / \mathrm{C}_{3} \mathrm{H}_{7}^{+}$(1)

29: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{+} / \mathrm{C}_{2} \mathrm{H}_{5}^{+}$(1)
15: $\mathrm{CH}^{+}{ }^{(1)}$
(2 max if +ve sign omitted or -ve) (+ can be anywhere) 3
(iii) Isomer 1 (dependent on candidate's order) (1)

Isomer 2 could not (easily) give peak at $29 / \mathrm{C}_{2} \mathrm{H}_{5}^{+}$(1) 2
(c) (i)
 or

(1)

(1)
(ii) ester (1)
carboxylic acid (1)
names must be appropriate way round relative to (i)
these marks dependent on correct answers in (i)
16. (a) \mathbf{A}
$\mathrm{CH}_{3} \mathrm{COOH}(1)$
(b) C
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(\mathbf{1})$
(c) \mathbf{E}

(d) \mathbf{G}
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}(\mathbf{1})$
(e) \mathbf{I}

(f) \mathbf{K}
one alkene e.g. $\mathrm{CH}_{2}=\mathrm{CH} \mathrm{CH} 2 \mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$

B

HCOOCH_{3} or $\mathrm{HOCH}_{2} \mathrm{C}_{\mathrm{O}}^{-\mathrm{H}}{ }^{(\mathbf{1})}$

D
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}(\mathbf{1})$

F

(1)

2
H
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathbf{1})$
2
J

$$
\begin{aligned}
& \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \\
& \text { or }\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br} \\
& \text { or }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} \quad \text { (1) }
\end{aligned}
$$

L one cycloalkane e.g.

(1) etc

(1)
17. (a) Name nucleophilic addition (1)

Mechanism

(b) (i) Equation
Reducing agent
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+2[\mathrm{H}] \rightarrow \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}(\mathbf{1})$
$\mathrm{NaBH}_{4}(\mathbf{1})$
(ii)

Carbonyl compound A
$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
(1)

(1)

Alcohol D

(1)

18. A $1715 \mathrm{~cm}^{-1} \quad \mathrm{C}=\mathrm{O}$ group (1)

B $3350 \mathrm{~cm}^{-1} \quad \mathrm{O}-\mathrm{H}$ group alcohol (1)

$$
\begin{gathered}
\mathrm{A} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3} \\
t(\mathbf{1}) \\
\mathrm{q} \text { (1) }
\end{gathered}
$$

two environments or two kinds of proton (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2}$ adjacent or coupled (1)
ratio 2:3 or 4:6 (1) symmetric (1)
$\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}\right]^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}(\mathbf{1})$
$\mathrm{m} / \mathrm{z}=86$ (1)
(1)
or M_{r} for A

$\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{3}(\mathbf{1})$ and $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}} \mathrm{HCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathbf{1})$
both secondary (1)
hydration gives \mathbf{B} and $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (1)
OH D
about 50% of each (1)
$\mathrm{A} \rightarrow \mathrm{B}$ reduction
$B \rightarrow C$ dehydration or elimination (1)
C is an alkene (1) cis/trans isomers (1)
D is a racemate (1) or optical isomers any 20
19. (a) $\mathrm{X}(\mathrm{O}-\mathrm{H})($ alcohols) penalise acid or missing "alcohol" 1

Y C=O allow carbonyl

(b)

3
Allow conseq dibromocompounds following incorrect unbranched alkenes NOT allow dibromocompound consequent on a duplicate alkene NOT allow monobromocompounds if HBr added

6:3:1 either next to correct structure or to none

Allow a mark for identifying correct dibromocompound with three peaks
even if integration ratio is wrong
if 6:3:1 missing or wrong, no marks for splitting 1
Only award a mark for splitting if it is clear which integration number it
refers to
6 singlet or drawn $\quad 1$
3 doublet or drawn 1
1 quartet/quadruplet or drawn 1
20. (a) (i) 3 peaks or shown in a list 1 $m / z=126,128$ and $130(56+70 / 72 / 74)$ (all 3 scores 2) 2 (if 56 wrong allow ($x+70 / 72 / 74$) for1(x cannot be zero) (any two scores 1)
(ii)

3
(b) (i) optical 1
equal mixture of enantiomers 1
(optically) inactive or effects cancel 1
plane polarised light use stereospecific reagent (QoL) 1
rotated in opposite/differentdirections (QoL) reacts with one isomer only1
(ii) carbocation 1
planar - (must refer to carbocation or intermediate) 1
attack from either side equally likely - (must refer to carbocation /intermediate) 1
(c) (i) 2 peaks (if 4 peaks allow splitting only) 1
ratio $6: 2$ or $3: 1$ 1
doublet (6 or 3) 1
quartet (2 or 1) 1
(ii) S

T

If written answer is correct, ignore incorrect labelling of structures.
If no written answer, allow correctly labelled structures.
Both COOH groups must be on the same side/ close together/ cis .
No rotation about $\mathrm{C}=\mathrm{C}$ axis
Structure

Allow

(b) $\mathrm{Br}_{2} / \mathrm{HBr} / \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}^{+}$(Mark M1)

NB If electrophile $\mathrm{H}^{+} / \mathrm{Br}^{+} / \mathrm{NO}_{2}{ }^{+}$allow M1, M2 and M4 If the acid is incorrect, M2 and M3 can still be scored Allow M4 consequentially if repeat error from part (a)
(c) e.g. $2 \mathrm{NaOH}+\mathrm{HO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{H} \rightarrow \mathrm{NaO}_{2} \mathrm{CCHCHCO}_{2} \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O}$

Both H replaced 1
Balanced for atoms and charges 1
NB Allow ionic equations and $2 \mathrm{NaOH}+\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \rightarrow$ $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{Na}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Allow one if structure incorrect but molecular formula correct
Allow one for a correct equation showing one H replaced
(d) M1 Two peaks 1

M2 No splitting or singlets 1
M3 (Two) non-equivalent protons or two proton environments 1
M4 No adjacent protons 1
M5 Same area under the two peaks or same relative intensity 1
NB Doublet could score M1 and M3 or M5 (Max 2)
More than two peaks $C E=0$
Apply the "list principle" to incorrect answers if more than 3 given
22. (a) $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+} 1$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}+\mathrm{AlCl}_{3} \rightarrow\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right]^{+}+\mathrm{AlCl}_{4}^{-} \quad 1$
(Penalise wrong arrows in the equation or lone pair on Al In the equation, the position of the + on the electrophile can be on O or C or outside square brackets, Can score electrophile mark in mechanism if not previously gained)

structure
(Arrow for M1 must be to C or to the + on C penalize + in intermediate if too close to C1; horseshoe should extend from C2 to C6)
(b) $\quad m / z=105 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}$

$$
\begin{aligned}
& m / z=77 \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+} \\
& \text {(not Wheland intermediate) } \\
& \text { (Penalise missing + once) } \\
& \text { Allow position of }+ \text { on } \mathrm{O} \text { or } \mathrm{C} \text { of } \mathrm{CO} \text { or outside [] for the } \\
& \text { fragment ion }\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right]^{+} \\
& \text {Allow position of }+ \text { on } \mathrm{H} \text { or } \mathrm{C} \text { or outside [] for the fragment ion } \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5}\right]^{+}} \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{2} \mathrm{CH}_{3}\right]^{+} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}} \\
& \text {(} \text { must be on } \mathrm{H} \text { or } \mathrm{C} \text { of } \mathrm{CH}_{2} \text { or outside bracket) }
\end{aligned}
$$

(1) for molecular ion (1) for RHS 2
Allow molecular formulae, i.e. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}^{+} \cdot \longrightarrow \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{5}$.(c) Nucleophilic addition1
1 Q contains asymmetric carbon or chiral centre or are chiral molecules
2 with 4 different groups/atoms attached (stated)
not molecules attached3 planar $\mathrm{C}=\mathrm{O}$4 attack from each side5 equally likely or equal amounts of each isomer formed
6 Racemic mixture or racemate (Q of L)
7 of mirror images or enantiomers or d / l or $+/-$ or R/S or drawn max 6
(d) Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ or conc $\mathrm{H}_{3} \mathrm{PO}_{4}$ or $\mathrm{Al}_{2} \mathrm{O}_{3}$ or iron oxides Not HCl or HBr 1
Geometrical or cis-trans 1
Double bond or C=C not just π cloud 1
(stated not just drawn)
2 Different atoms/groups on each C (not molecules) 1 (stated not just drawn)
23. \mathbf{X} is methyl propanoate

$\begin{array}{lc}\text { M1 for arrow and lone pair, } & 4 \\ \text { M2 for arrow } \\ \text { addition-elimination } & 1\end{array}$

Spectrum 2
if thinks Spectrum $1=X$ can only score for structure of Y
\mathbf{Y} is $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH} 31$
The two marks for explanation are awarded for discussing one or more of the four peaks (not those for the CH_{3} of the ethyl groups)
for stated δ values the integration or the splitting should be related to the structure: e.g. structure of \mathbf{X} shows that
at $\delta 3.7-4.1$ (1) spectrum of \mathbf{X} should have integration 3 / singlet (1)
or
at $\delta 2.1-2.6$ (1) spectrum of \mathbf{X} should have integration $2 /$ quartet (1)
Spectrum 2 has these
[OR Spectrum 1 has
at 3.7 - 4.1 (1) quartet / integration 2 (1) so not \mathbf{X}
at 2.1 - 2.6 (1) singlet / integration 3 (1) so not \mathbf{X}]
24. (a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$ reuced by
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1)}$
oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHO}$ (1)
and $\quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}(\mathbf{1})
$$

oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)
Equation: $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}(\mathbf{1})$
Note: Deduct one if all three compounds given as reducing agents.
(b) Tollens' reduced by
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}(\mathbf{1})$
oxidised to $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$ (1)
Equation $\quad\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+2 \mathrm{NH}_{3}(\mathbf{1})$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1})$

Product $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OOCCH}_{3}$ (1)
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
Product $\quad\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COOCCH}_{3}(\mathbf{1})$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ has five peaks (1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$ has two peaks (1)
25. (a) 3 Ketones:

3: 2: 2: 3 (1)

(1)

6: 1:3 (1)
6: 4 or 3: 2 (1)
(b) 4 aldehydes:

(1)

(1)
$\mathrm{Y}(\mathbf{1}) \quad \mathrm{Z}(\mathbf{1})$
X (1)

7
(c) nucleophilic \wedge addition (1)
equal (1) mixture of optical isomers (1)

(1)
(d) Reagents are oxidizing agents (1)

Aldehydes can be (easily) oxidized (1)
Ketones are not (easily) oxidized (1) 3
26. Part (a) for each section:

A totally wrong reagent scores zero
An incomplete reagent such as silver nitrate for Tollens, loses the reagent mark, but can get both observation marks.
A wrong reagent such as $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$ or bromide water loses the reagent mark and the next mark "gained", i.e. can only score $1 / 3$ if both observations correct
If two test given and results given correctly for both compounds in both tests then full marks
If one test on A and a different test on B with only these results given
if both results correct then score $2 / 3$
if either result wrong then score $1 / 3$
if either test would not work as a distinction, then score $0 / 3$
If the candidate says $\mathrm{A}=$ ketone (or $\mathrm{C}=$ benzene), lose this mark.
If the candidate omits the letters when referring to the pair of compounds, e.g. says alkene decolourises / alkane no reaction penalise one mark only.
(a) (i) penalise observations which just say colour change occurs or only state starting colour

Tollens	$[1]$	Fehlings / Benedicts	$[1]$	Brady's or 2,4-dnph	$[1]$	sodium	$[1]$
No reaction A	$[1]$	no reaction A	$[1]$	no reaction A	$[1]$	bubbles or hydrogen A	$[1]$
silver mirror or grey or ppt B	$[1]$	red or ppt B	$[1]$	(Yellow / orange) Xtals or ppt	$[1]$	no reaction B	$[1]$
(not silver solution)	$[1]$	not red solution	$[1]$	not yellow / orange solution	$[1]$		

Carboxylic acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$	$[1]$	Schiff's	$[1]$	iodoform or $\mathrm{I}_{2} /$ NaOH	$[1]$	PCl_{5}	$[1]$
(sweet) smell A	$[1]$	no reaction A	$[1]$	yellow (ppt) A	$[1]$	(misty) fumes A	$[1]$
no reaction B	$[1]$	goes pink B	$[1]$	no reaction B	$[1]$	no reaction B	$[1]$

(ii)

Bromine (water)	$[1]$	KMnO_{4}	$[1]$	$\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$	$[1]$		$[1]$
no reaction C	$[1]$	no reaction C	$[1]$	no reaction C	$[1]$		$[1]$
decolourised D	$[1]$	goes brown D	$[1]$	goes colourless D	$[1]$		$[1]$
not clear not discolour (is)ed							

(iii) not just smell for E

an identified (hydrogen) carbonate	$[1]$	correct metal	$[1]$	UI or stated indicator	$[1]$	PCl_{5}	$[1]$
no reaction e	$[1]$	no reaction E	$[1]$	no change E	$[1]$	(misty) fumes E	$[1]$
bubbles or CO_{2} F	$[1]$	bubbles or $\mathrm{H}_{2} \mathrm{~F}$	$[1]$	red or correct colour F	$[1]$	no reaction F	$[1]$

(b) F has absorption at $2500-3000 \mathrm{~cm}^{-1}$ (due to COOH) (1)
N.B. Qu asks "How fingerprinting is used" i.e. no marks for simply stating fingerprint region unique.
Compare with (spectrum of) known compound or database (1)
(exact) match
(c) major peak $\left[\mathrm{CH}_{3} \mathrm{CO}\right]^{+}(\mathbf{1})$
m / z
43 (1)
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}{ }^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{+}+\mathrm{OCH}_{3}{ }^{-}$
(1 for molecular ion) (1 for correct other fragment)

Alternative:

```
major peak[[\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{]}{}{+}(\mathbf{1})
m/z 15(1)
```


(1) (1 for radical)

If major peak wrong but possible e.g. $\mathrm{CH}_{3} \mathrm{OO}^{+} \mathrm{m} / \mathrm{z}=59$ no marks so far, but can score up to 2 for $\mathrm{CH}_{3} \mathrm{COOCH}_{3}{ }^{+} \rightarrow \mathrm{CH}_{3}{ }^{+}+\mathrm{CH}_{3} \mathrm{COO}^{+}$or ${ }^{+} \mathrm{COOCH}_{3}+\mathrm{CH}_{3}$

1 for correct other fragment]

27. (a) X contains $>\mathrm{C}=\mathrm{O}$ (1)
if X and Y reversed lose this mark but allow remaining max 6/7
$\therefore \mathrm{X}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (1)
$\therefore \mathrm{Y}$ is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}(\mathbf{1})$

Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$: catalyst (1)
(b)

B

(1)
in any order
(c) $-\mathrm{O}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{2}$ -
 $2.1-2.6(1)$
a: quartet (1) $\curvearrowright 3$ adjacent H (1)
b: triplet (1) 2 adjacent H (1)
(d) $3269 \mathrm{~cm}^{-1} \therefore \mathrm{OH} \curvearrowright$ alcohol (1)
$\therefore \underline{G}$ is
 (1)

Notes

(a) first mark for $\mathrm{C}=\mathrm{O}$ stated or shown in \mathbf{X}

Ignore wrong names

$\mathbf{Y} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

allow $\mathrm{C}_{3} \mathrm{H}_{7}$ in \mathbf{A} if \mathbf{Y} correct or vice versa
Allow (1) for \mathbf{A} if correct conseq to qrong \mathbf{X} and \mathbf{Y}
other oxidising agents: acidified KMnO_{4}; Tollens; Fehlings
other reducing agents: $\mathrm{LiAlH}_{4} ; \mathrm{Na}$ /ethanol; $\mathrm{NiH}_{2} ; \mathrm{Zn}$ or Sn or $\mathrm{Fe} / \mathrm{HCl}$
(b) give (1) for carboxylic acid stated or COOH shown in each suggestion
(1) for correct E
any 2 out of 3 for \mathbf{B}, \mathbf{C} or \mathbf{D}
allow $\mathrm{C}_{3} \mathrm{H}_{7}$ for either the \mathbf{B} or \mathbf{D} shown on the mark schme
i.e. a correct structure labelled \mathbf{B}, \mathbf{C} or \mathbf{D} or \mathbf{E} will gain 2.
(c) protons a quartet must be correct to score 3 adjacent H mark. Same for b
(d) allow (1) for any OH (alcohol) shown correctly in any structure - ignore extra functional groups. Structure must be completely correct to gain second mark

Organic points

(1) Curly arrows: must show movement of a pair of electrons, i.e. from bond to atom or from lp to atom / space
e.g.

OR

(2) Structures
penalise sticks (i.e. $-\stackrel{\mathrm{C}}{\mathrm{C}}$-) once per paper

or

$$
\text { or } \quad-\mathrm{NH}_{3}
$$

or

$\mathrm{H}_{2} \mathrm{~N}-$
etc
Penalise once per paper
allow $\mathrm{CH}_{3}-$ or $-\mathrm{CH}_{3}$ or CH_{3} or CH_{3} or $\mathrm{H}_{3} \mathrm{C}-$
28. (a) Identity of \mathbf{X}; 2-methylpropene (1)

Absorption at $1650 \mathrm{~cm}^{-1}$ indicates an alkene present (1)
OR a chemical answer e.g. $\mathrm{Br}_{2}(\mathrm{aq})$ brown to colourless
(b) Reagents

Step 1 KOH (allow NaOH) (1) alcoholic (1) warm (1) Only allow solvent and warm if reagent correct

Step 2 HBr (1)
Mechanism:

$$
\mathrm{A} \rightarrow \mathbf{X}
$$

(1)

Or a carbocation mechanism
Mechanism

$$
\mathbf{X} \rightarrow \mathrm{B}
$$

(c) A gives three peaks (1)

B gives one peak (1)
Allow one for "A has more peaks than B" when no number of peaks is given
29. B $1685 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{O}$ (1)

C $\quad 3340 \mathrm{~cm}^{-1} \rightarrow \mathrm{OH}$ or alcohol (1)
D $\quad 1630 \mathrm{~cm}^{-1} \rightarrow \mathrm{C}=\mathrm{C}$ or alkene (1) only 1,4-dimethylbenzene will give B as a single compound (1)

nucleophilic addition or reduction

chiral or

(1)
30. A: 4 peaks or 4 different environments (1)
$1: 2: 2: 3$ (1) OH singlet (1) CH_{3} singlet (1)
2 triplets (1) $\mathrm{CH}_{2} \mathrm{CH}_{2}$ coupled (1)
B: 4 peaks or 4 different environments (1)
$1: 2: 2: 3$ (1) OH singlet (1) $\mathrm{OCH}_{2} \mathrm{O}$ singlet (1)
quartet + triplet (1) $\mathrm{CH}_{2} \mathrm{CH}_{3}$ coupled (1)
C: 2 peaks or 2 different environments (1)
$2: 6$ or $1: 3$ (1) CH_{3} groups equivalent (1)
2 singlets (1) no coupling (1)
31. (a) (i) electrophile lone pair acceptor/electron deficient species / electron seeking group / electron lover (not just positive group / species) (1)
substitution replacement / swap / substitution of one atom / group (in a molecule) by another atom / group (1) not molecules replaced
(ii) nitronium ion / $\mathrm{NO}_{2}^{+}(\mathbf{1})$
$\mathrm{HNO}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}$ (1)
$\mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HSO}_{4}^{-}$(1)
allow 1 mark for $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}{ }^{+}+\mathrm{HSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
allow 2 marks for $\mathrm{HNO}_{3} \quad 2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$ 1 for species, 1 for balancing
mechanism shows attack by $\mathrm{NO}_{2}{ }^{+}$with curly arrow from ring (1)
appropriate intermediate with ' + ' charge in centre of ring, incomplete circle or 2 double bonds (1)
mark consequentially on electrophile given
curly arrow from C-H bond to ring / deprotonation to give H^{+} final product must be nitrobenzene (1)
(iii) above $60^{\circ} \mathrm{C}$ likelihood of multiple substitution
/ nitration / (1)
likely to carry on reacting
(b) chlorine (1)
$\mathrm{AlCl}_{3} / \mathrm{FeCl}_{3} / \mathrm{Fe} /$ other suitable halogen carrier (1)
absence of sunlight / room temp / anhydrous (1)
(c) (i) 2-chloro(-2-)methylpropane / (2)methyl 2 chloropropane (1)
(ii) compound \mathbf{D} (1)
all same type of protons / hydrogen are all in same (chemical) environment / equivalent as they are all $\mathrm{CH}_{3}(\mathbf{1})$
(iii) compound C (1)
ratio $=6: 2: 1$ (1)
$2 \mathrm{CH}_{3}$ groups have 6 equivalent protons, CH_{2} has 2 protons, CH 1 proton (1)
must say same type of proton / H
penalise first omission of 'same type'
(iv) appropriate unambiguous formula for either but-1-ene or but-2-ene (1) appropriate unambiguous formula for the remaining structural isomer allow 1 mark if candidate draws cis and trans but-2-ene (1)
(v) unambiguous structure for 2-methylpropan-1-ol - may be from mechanism (1)
curly arrow / attack by $\mathrm{OH}^{-} \quad$ curly arrow from lone pair or charge only (1)
do not allow if $\mathrm{Na}-\mathrm{OH}$
curly arrow from bond to $\mathrm{Cl} /$ dipole shown on
$\mathrm{C}-\mathrm{Cl}$ bond / intermediate showing 3 full and 2 partial bonds to C (1)
loss of $\mathrm{Cl}^{-} \quad \mathrm{NaCl}$ or $\mathrm{Na}^{+}: \mathrm{Cl}^{-}(\mathbf{1})$

- not allowed
if $\mathrm{S}_{\mathrm{N}} 1$ mechanism given:
first mark as above - independent
second mark for correct carbocation formed including curly
arrow from C to Cl or $\mathrm{C}^{\mathrm{S}+}-\mathrm{Cl}^{\mathrm{S}-}$
third mark for hydroxide attack as above
final mark not available (wrong mechanism)
penalise missing proton once only

32. (a) ($\mathrm{M}-\mathrm{R})^{+}$. Is a radial-cation (1) covalent bond breaks (1)
to form a cation $\left(\mathrm{M}^{+}\right)(\mathbf{1})$ and a radical (R^{\cdot})(1)
(b) Cl has a two isotopes (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{35} \mathrm{Cl}=64$ and $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{37} \mathrm{Cl}=66$ (1)
relative abundances ${ }^{35} \mathrm{Cl}:{ }^{37} \mathrm{Cl}=3: 1$ (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}^{+\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2}^{+}+\mathrm{Cl}^{\bullet}$ (1)
(c) $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ or 3 isotopic combinations possible (1)
$\mathrm{C}_{2} \mathrm{H}_{4}{ }^{35} \mathrm{Cl}_{2}=98$ (1) $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{35} \mathrm{Cl}^{37} \mathrm{Cl}=100$ (1) $\mathrm{C}_{2} \mathrm{H}_{4}{ }^{37} \mathrm{Cl}_{2}=102$ (1) 4
33. (a) A $\mathrm{C}_{6} \mathrm{H}_{14}$ (1)
 Ratio 12:2 or 6:1 (1)

B/C C=O (1)
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ (1)

ratio $6: 4$ or $3: 2$ (1)

ratio 9:1
(b) Tollens (1) silver mirror with aldehyde (1)
no reaction with ketone (1)
(or Fehlings red ppt with aldehyde, no reaction with ketone)
Fingerprint region (1)
Exact match with standard (1)
(c) $3300 \mathrm{~cm}^{-1} \therefore$ OH group in both (1)
$1650 \mathrm{~cm}^{-1} \therefore \mathrm{C}=\mathrm{C}$ in D (1)
\therefore D is $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (1) (or others)
E is \square_{OH} etc (1) 4
34. (a) Region 1500-400 cm^{-1} (1)
unique for each compound (1)
compare spectrum with that of known compound (1)
exact match (1)
(b) C_{5} esters

Q is

$R \quad$ is (3 peaks)

(3 peaks)
$\mathrm{OCH}_{3}(2)$
T (alcohol) is $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$ (2)
(3 peaks)
U (acid) is $\mathrm{CH}_{3} \mathrm{COOH}$ (2)
(2 peaks)
T absorption at $3250 \mathrm{~cm}^{-1}$ confirms OH (alcohol) (1)
U absorption at $2900 \mathrm{~cm}^{-1}$ confirms OH (acid) or at $1700 \mathrm{~cm}^{-1}$ confirms $\mathrm{C}=\mathrm{O}$ (1) max 11
35. (a)
A

B

(1)
C

D
(1)

A = butanal
$\mathbf{B}=$ methylpropanal
C = butanone
D = ethyl ethanoate (1)
Ignore numbers in names unless they make them incorrect
spellings must be correct accept alternative trivial names correctly spelled
(b) ethanol / correct formula (1)
ethanoic acid / ethanoyl chloride / ethanoic anhydride / correct formula (1)
temperature less than $100{ }^{\circ} \mathrm{C}$ / reflux heat / concentrated sulphuric acid (1)
dilute sulphuric acid / acid conditions / H^{+}
(this mark dependent on sensible answers for first two marks)
for ethanoyl chloride, room temperature / dry / anhydrous
for ethanoic anhydride, heat / up to $100^{\circ} \mathrm{C}$
(c)

or

(1)
butanoic acid methylpropanoic acid (1)
2
(d) heat with Fehling's solution / ammoniacal silver nitrate / Tollen’s reagent / other suitable oxidising system eg acidified dichromate / Schiff's reagent
B gives red, green or brown (precipitate) / silver (mirror) or black/grey (1) precipitate / other, dependent on reagent

C shows no change (1)
B and C can be referred to as 'aldehyde' and 'ketone' only if names correct in (a) or if there is some other valid identification
(e) (i) \mathbf{B}
two methyl groups / 6 Hs in identical chemical environments or (1) 2 Hs in unique environments
(ii) \mathbf{A}
four different chemical environments (for protons) (1) in (i) and (ii), second mark is dependent on first mark
(iii) same number of hydrocarbon groups with same number of protons in each 1
(f) nucleophilic addition (1)

(1) for intermediate
(1) for product
allow -ve charge on N but curly arrow must come from \mathbf{C} allow H from HCN or $\mathrm{H}_{2} \mathrm{O} \quad 5$

